Managing pH Drift Brian Whipker, NCSU

2:30 to 3:00 Eastern

MANAGING PH DRIFT:

RECOGNIZING AND CORRECTING
HIGH AND LOW PH DISORDERS

Brian Whipker
Floriculture Extension and Research
bwhipker@ncsu.edu

NC STATE
UNIVERSITY

Sponsored by:

PROVEN
WINNERS

PROVE

Topics: Managing pH Drift

- 1. Optimal pH Ranges
- 2. Symptoms
 - High and low pH symptoms
- · 3. Factors influencing pH drift
- 4. Monitoring procedures
- 5. Corrective procedures

Managing pH Drift Brian Whipker, NCSU

Possible Causes – Iron Deficiency

- Substrate pH too high
- Other Causes
 - Root rot (Pythium, etc check roots)
 - Cold growing
 - Waterlogged conditions

Low pH Type I: Bronzing Good Low pH

Table 1. Leaf tissue analysis results.		
Element	Normal Plant	Symptomatic Plant
Nitrogen (%)	4.42	4.04
Phosphorus (%)	0.35	0.47
Potassium (%)	2.15	3.98
Calcium (%)	1.13	1.69
Magnesium (%)	0.87	1.34
Sulfur (%)	0.27	0.28
Iron (ppm)	787	1870
Manganese (ppm)	193	618
Zinc (ppm)	48.9	53.4
Copper (ppm)	12.7	16.9
Boron (ppm)	53.1	66.1

Managing pH Drift Brian Whipker, NCSU

pH Monitoring Methods

- 1:2 Dilution
 - In-house test of using 1 part substrate to 2 parts water
- SME (Saturated Media Extract)
 - Utilized by most substrate testing labs
- PourThru
 - A non-destructive in-house test

PourThru Monitoring Program

Managing pH Drift Brian Whipker, NCSU

pH Management

- · Learn to diagnose symptoms
 - High and low pH
- Know which factors influence pH drift

 If the FC is too high pH and done
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$
- Start a monitoring program to check pH/EC
- If problems occur, implement the corrective procedures in e-GRO Alert 3-05.

